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A stability analysis of meandering and braiding perturbations in a model alluvial 
river is described. A perturbation technique, involving a small parameter repre- 
senting the ratio of sediment transport to water transport, is used to obtain the 
following results. 

Under appropriate conditions, the existence of sediment transport and friction 
are necessary conditions for the occurrence of instability in the flow and on the 
bed; thus instability is not inherent in the flow alone. An Anderson-type scale 
relation for longitudinal instability is obtained for meandering. A relation 
estimating the number of braids and differentiating between meandering 
and braided regimes is derived. These relations are independent of sediment 
transport. 

1. Introduction 
River channels possess three characteristic fluvial morphologies : straight, 

meandering and braided. The latter two states are illustrated in figure 1 (plate 1). 
Deviation from the straight configuration appears to be associated with a fluvial 
instability (Callander 1969). The cause of the instability has been the subject of 
much speculation. Such investigators as Leopold & Wolman (1957), Gorycki 
(1973a, b )  and Karcz (1971) have suggested that meandering is inherent in the 
flow, the role of sediment transport being passive and collateral. In  fact meander- 
ing has been observed not only in alluvial rivers, but also in supra-glacial melt- 
water streams, in the Gulf Stream and Kuroshio, and in the small laboratory 
streams (a few millimetres in width) of Gorycki; in each of these cases, sediment 
transport is absent. Others, notably Schumm (1963), have emphasized the role 
of sediment in the meandering mechanism. Similarly, the studies of Hayashi 
(1970) and Werner (1951) have given resistance a minor role, whereas Hansen 
(1967) and Gorycki have asserted the opposite. 

Many theories have been developed to predict a commonly measured para- 
meter of stream morphology: the longitudinal meander or braid wavelength. 
In  the case of meandering, the following three fmmulae are typical. Werner con- 
sidered gravity waves and obtained h/B N ZF, where h is the wavelength, B is 
the stream breadth and F is the flow Froude number, Hansen used a stability 
model to obtain hid, = 7F2S-I, where do is the flow depth and S is the 
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longitudinal channel slope. Anderson (1967) analysed transverse oscillations 
through a pendulum analogy and obtained 

h/(Bd,,)+ = constant x P+, 

where the constant is evaluated from flume data as being about 72. These 
formulae predict very different wavelengths. 

In  recent years stability models have succeeded in explaining a number of 
aspects of meandering and braiding. In  addition to Hansen, Callander and 
Hayashi, Adachi (1967), Sukegawa (1970) and Engelund & Skovgaard (1973) 
have made notable contributions. 

The present paper considers a two-dimensional stability model due to Hansen 
and Callander. Expansion techniques are used to obtain an analytical descrip- 
tion, the essential results being a differentiation between meandering and 
braided regimes, derivation of relations for the meander wavelength and number 
of braids, and a restricted establishment of sediment transport as a necessary 
condition for the occurrence of fluvial instability. 

2. The theoretical model river 
Treatment of actual rivers presents insurmountable difficulties, so in order 

to expedite the analysis an idealized model river which retains those features 
essential for the occurrence of fluvial instability is proposed. 

The following statements are observed to be true in nature and have been 
demonstrated in laboratory flumes: (i) meandering and braided rivers generally 
have large width-depth ratios; (ii) the sinuous pattern of banks and bars is 
due to the emergence of a submerged alternating bar pattern on the bed of an 
otherwise roughly straight river during low flow; (iii) these alternating bars 
occur even in channels with non-erodible banks. Justification of these statements 
for natural rivers is provided by Kinoshita (1957) and Fahnestock & Maddock 
(1964). 

The implication here is that a theory of submerged alternating bar formation 
in straight rivers is also a theory of the origins of meandering and braiding. 
Figure 2 (plate 2) shows two stages in the development of a meander pattern in 
an initially straight channel a t  the St Anthony Palls Hydraulic Laboratory. 
First an alternating bar pattern develops while the channel is still straight, but 
in time lateral growth of the bars causes bank erosion and channel meandering, 
preserving the wavelength of the alternating bars. 

The existence of initial channel curvature and the secondary flow associated 
with it, has been observed to expedite the meandering process (Friedkin 1945). 
However, initial curvature is not necessary for the formation of either meandering 
or braiding, and both form readily in its absence, as is illustrated in figure 2 
(Schumm & Khan 1972; Anderson, Parker & Wood 1975). 

Thus an investigation into the cause of fluvial instabilit>y can be carried out 
by theoretically examining submerged bedforms in a model shallow channel 
with width B and with straight, non-erodible, parallel, vertical banks. Except 
for the bars, the channel cross-section is assumed rectangular. The channel is 
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of constant slope S and carries a constant discharge Q. The bed consists of uni- 
form erodible (or non-erodible) material, and for simplicity it is also postulated 
that the stream carries no suspended load. 

This theoretical model river is realized in solid-walled tilting flumes of the re- 
circulating or sediment-feed type. 

3. The momentum and mass balance equations 
The shallowness of the assumed model suggests a two-dimensional (i.e. 

excluding the vertical direction) approach to momentum and mass balance in 
which velocities are assumed to be quantities averaged over the depth. Postu- 
lating hydrostatic pressure, the general balance equations are 

a a ad 
ax a?/ 

at 

-(zed)+- (Vd)+7& = 0, 

a ( h - d )  1 +- 
where d is the channel depth, h is the water surface’s height above some reference 
level, (u , v )  is the stream velocity vector, (q,,q,) is the vector of volumetric 
sediment transport (bed load), (7,) ry) is the bed stress vector, p is the density 
of water and A, is the bed porosity. 

This two-dimensional approach ignores the effect of dynamic pressure and 
only partially accounts for helicity effects induced by the vertical velocity 
component. The former is justified, whereas the latter may not be. A more 
complete, three-dimensional approach is outlined in Engelund & Skovgaard 
(1973). 

The momentum equations can be written in shorthand tensor notation in the 
form 

where 

Note t.hat Ci is a generalized slope vector. 

4. Constitutive relations 
Perturbations about a steady flow are to be considered; however a knowledge 

of the steady flow is required first. The balance equations admit the following 
unperturbed solution: v = qu = rV = 0, u, = U ,  4,: = q,, rZ = 70) h = h, - SX and 
d = do. Here the following constraint’s must be satisfied: if a = Q/B and 

9 = Ud,, C,Uz = gd,S. (Z), (3) 
Go = 70/PU2, 



460 G. Parker 

Note that C, is a dimensionless friction factor and9 is the water discharge per 
unit width. 

In  order to specify the unperturbed flow, constitutive relations for Co and qo 
must be known. These relations have been a major source of controversy in the 
field of sediment hydraulics, so herein a theory general enough to accommodate 
any specific load or resistance relation is presented. 

First it is assumed that enough constraints exist so that solution sets (unique 
or otherwise) can indeed be specified. (Concurrence on this point is far from 
universal; see Maddock 1970.) In  a given model river, the relevant parameters 
are B, a, do, U,  qo, 8, C,, g ,  the characteristic sediment diameter d,, the fluid 
kinematic viscosity v, the fluid and particle densities p and ps,  and the dimension- 
less sediment shape, distribution and porosity factors pi, i = 1,2,3,  ... . The 
following set of dimensionless parameters can be specified from these: 

d,/B, pi, i = 1,2,3,  ... . 
The parameter d,/B is assumed small and is thus ignored. The two constraints 

(2) and (3) can be used to eliminate two more parameters, leaving, for example, 
8, S, RP, $, C,, q* and pi as an independent set. From the remaining parameters, 
the most general possible (but not necessarily single-valued) constitutive rela- 
tions for resistance and sediment transport can be formed: 

Relations equivalent to  these have been determined empirically by Peterson 
(1975). Also, any specific pair of resistance and load equations can be cast in the 
above form. The utility of this formulation in the present work is that the 
st.ability model presented below is rendered independent of specific resistance 
and load relations. 

With (4) and (5) two more parameters are eliminated, leaving five free para- 
meters. A knowledge of water temperature and sediment type specifies $, RP 
and pi. The final pair of constraints needed to specify the unperturbed flow 
varies depending on external conditions. In  a sediment-feed flume, qr and q* 
are known. In  nature the constraints are complex, but for graded rivers (rivers 
in long-term equilibrium) qr and S are easily measured. 

Thus, in principle, the unperturbed flow can be specified. In  practice a numeri- 
cal procedure, dependent on a specific evaluation of (4) and (5 ) ,  is usually re- 
quired. Henceforth i t  is assumed that the constitutive relations are known. 

The constitutive relations are now generalized for slightly varying flow. For 
clarity, tensor notation is used in this section alone; for example, ui, i = 1 or 2, 
indicates a component of the velocity vector u and u indicates the magnitude of 
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u, i.e. u2 = uiui, rather than the x component. Equations (4) and ( 5 )  are replaced 
by general relationships: 

ri/pu2 = Li(uj/(+gds)', x; xi,  t ) ,  

qi/($gds)'ds = -Wuj/(+gds)', Z; xj,  t ) ,  

( 6 )  

(7) 

where R,, @ and pc  are suppressed since they are constants for a given river 
reach, C2 = &Xi,  and L: and L; are unevaluated operators. Assuming isotropy 
and spatial homogeneity, these relations reduce to 

7i = ~ C U U ~ ,  pi  = ( $ g d s ) * d S q * ~ - l u i ,  (81, (9) 

where C and q* can be obtained directly from (4) and ( 5 ) ,  which have been 
previously evaluated for non-varying flow, as 

c = A(4(+94) '3  P* = &(@/($WS)+, C). 

The two-dimensional generalization provided by these relations is essentially 
the same as that used implicitly by Callander and Hansen. Henceforth tensor 
notation is replaced by the previous notation. 

5. The perturbed equations of motion 

uniform flow, i.e. 
The balance equations are considered for slight perturbations about steady 

(u, v) = ( U ,  0) + (uf, v'), 

(elm qz/) = (40,O) + (d, !I;), 
(7x9 ry) = (7090) + (6 73, 

h = h,-Xx+h' ,  d = d,+d', 

where, for example, (u'2 + v'2)'/U < 1. This yields, with appropriate linearization, 

auf av' 1 ad' ad' -+-+- -+u- = o ,  
ax ay d o (  at a x )  

a(h ' -d ' )  1 aqj. +- (-+%) = 0. 
at i -hP \ax  

The constitutive relations (8) and (9) are likewise linearized by means of double 
Taylor series expansions about the unperturbed slope and velocity; for example 

luac u'+p- ac u22;', 
rj. = 2pCU I +- ( 2 c a u )  as 

where C' is the perturbed part of X, and where C, aC/aU and aC/aS are evaluated 
in the unperturbed state, i.e. u2+v2 = U2, C = S and C = C,. A reduction of 
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these relations provides the determinate perturbed balance equations, which 
are presented in dimensionless form according to the following transformation, 
designed to avoid bulky starred equations: x+x*, y-f y*, t-ft*, then x* = dox, 
y* = doy, t* = (do/U)t, u' = UU, v' = Uv, h' = doh and CE' = dod. The resulting 
equations are 

au au ah -+- = -F-"-Co(Ml~-M2d), 
at ax ax 

The constants appearing in these equations are the undisturbed Froude number 
F = U/(gdo)&, a dimensionless measure of sediment transport p = qo/( 1 - hp) Ud,, 
and 

Both their form and specific evaluation indicate that the constants M,, M,, Nl 
and N2 are of order unity. 

6. The characteristic polynomial 

sinusoidal perturbations are introduced into the balance equations: 
To conduct a stability analysis, the following generalized dimensionless 

(11)  1 u = Q(y)expi(kx-q5t), 

h = &(y) expi(kx - $t), 

u = a(y)expi(kx-$t), 

d = &y) exp i ( k x  - q5t). 

Here k is the dimensionless fluvial instability wavenumber, related to the dimen- 
sional wavelength h by the relation h/do = 2~r /k ,  and q5 is the complex celerity, 
its real part $,, being related to the disturbance wave speed c by c = q5,,/k and 
its imaginary part q5, being the temporal exponential growth rate. Note that 
instability requires that $, > 0. 

These perturbations are introduced into the balance equations and are re- 
duced with the aid of the boundary condition of impermeable banks; i.e., if 
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B" = B/d,, v = 0 at y = & +B*. As a result i t  is found that 8 can take only the 
forms 

(12) 1 cos (gmkBy) ,  m = 1 , 3 , 5 ,  ..., 
Sin(+rnk,y), WE = 2 , 4 , 6 ,  ..., 

8 -  { 
where kB = 2TC/B* is the dimensionless width wavenumber. 

The bed height fluctuation is given by 9 = h - d ;  thus @ = - 2. Reduction 
shows that 9 N i%/ay. Thus the bed patterns corresponding to various values 
of m can be deduced from (11). For m = 1 the bed pattern consists of a single 
braid of submerged alternating bars characteristic of the early stages of mean- 
dering, as may be seen in figure 3.  Increasing values of m imply an increased 
tendency towards incipient braiding, with m equalling the number of braids, 
as can be seen from the appearance of middle bars in figure 3 for values of m 
greater than one. 

The complex celerity $ must satisfy the dispersion equation implied by (10) 
and (11): 

$4 + [ - 3k+iC0(M1 + l)] $3 + [ - K2( 1 +p)  -MICi + k2(3 -P2{ 1 +NIP} )  

- ico(2M1+ J& + 2 )  k ]  $' + [(K2{ 1 + p ( 2  + N,)} +{MI + 2 2 )  Ci) k 
- (1 -P-'{1 +p(2N1+ N,)}) k3 + iC,( - K2M,{1 +J?} + k2{(M1 + M, + 1) 
- 1 +&/3)})] $ + P2J?[ - P2K2( 1 + N,) k2 - k4(& +N2) 

+ i C ~ ( P 2 K 2 1 c { l M ~ + M 2 + ~ 2 M ~ - N ~ M ~ } + { N ~ + N ~ } k 3 ) ]  = 0, 

in which K = BmP-lk,. To test for instability i t  is necessary to obtain the four 
roots of this polynomial equation for the complex celerity. 

The form of the dispersion equation is f ($, k ,  K ,  P, C,, J?, MI,  M,, N,, N,) = 0. 
The number of parameters is large, and a general solution for $ is prohibitively 
tedious. Here asymptotic expansions in the small parameter /3 are considered, 
i.e. $ = $ o + J ? $ 1 + p 2 $ 2 +  ... . In  fact J?, which is essentially the ratio of bed 
sediment transport to fluid transport, is almost universally small. Typical values 
for various laboratory and field rivers are given in table 1. The equation for the 
lowest-order term in the expansions for three roots of the dispersion equation 
(the subscript has been omitted) is 

$3 + [ - 3k +iC,(Ml+ l)] $'+ [ - K2 + k2(3 -FF-') -Iw,CE 
- iC,( 2M1 + M2 + 2 )  k ]  $ + [ ( K 2  + {Ml + M,} C;) k - (1 - P-') k3 

+iC,(-K2Jlj++2{(Ml+M2+1)-P-2))]  = 0. (13 )  

The equation for the lowest-order term in the expansion for the fourth root 
(subscript omitted) is 

[ (K2 + {Ml + M,) Ci) k - (1 -P2) k3 + iC,( - P J I 1  + k2{(M, + M2 + 1) 

- P2})] $ + P2/3[ - P2K2k2(  1 + N,) - k4(N1 + N,) 

+ iC,(P2K2k {Ml + M, + N.M, - NlJ12} + {Nl +N2} k3)]  = 0. (14) 

The above decomposition of the dispersion equation has an important physical 
meaning. The three roots obtainable from ( 1 3 )  will be independent of the 
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m=3  m = 4  

FIGURE 3. Bed patterns associated with various degrees of braiding. 
Ths number of braids is m. The dotted regions mark submerged bars. 

sediment transport p. The root from (14) will be proportional to the sediment 
transport, vanishing as p-+ 0. This will provide a means of determining whether 
fluvial instability is dynamically dependent on sediment transport. 

7. Properties of the bedload-dependent solution 
The imaginary part of the soIution to (14) is 

(All  K4 + AI2Ct K2) L2 + (AZi K2 4- A2,C%) k* +A, 7c6 
’’ ZZZ ’‘’ A4CiK4 f (A5,K4 A52CiK2 + A5,C;) k2 + (A,,K2 + AGzC;) k4 f A,k6’ 

(15) 
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Investigator(s) 

Hubbell & Matejka (1959) 
Jones, Hawley & Crippen (1972) 
Mapes (1969) 
Nordin & Beverage (1965) 
Colby & Hembree (1955) 
Fahnestock (1963) 
Sharma (1974) 
Quraishy (1973) 
Schumm & Kahn (1972) 
Schumm & Kahn (1  972) 

Puiver 

Middle Loup River 
Clear Creek 
Walla Walla River 
Rio Grande 
Niobrara River 
White River 
Laboratory 
Laboratory 
Laboratory 
Laboratory 

State 

Braided 
Meandering 
Meandering 
Braided 
Meandering 
Braided 
Meandering 
Meandering 
Braided 
Meandering 

Typical value 
of B 

2.5 x 10-4 

3.5 x 10-4 
2.5 x 10-4 

5 x 10-4  
1 x 10-3 
1 x 10-3 

2.5 x 10-3 
1 x 10-3 

1 x 10-6 

1 x 10-3 

TABLE 1. Typical values of /I for some natural and laboratory rivers 

where 

A,, = N2(Ni-I), 
A,, = - ( I  + N,) - (N, + N,) M, + F-2(M1 + 31, - I )  (N, - I),  

A51 = 1, A52 = 2(1-M1) (iM,+M2)-3M,(I-F-’), A53 = (M,+M,)’, 
A,, = -2 ( l -F-2 ) ,  A,, = (Jfl+M2)2+(l -P-2)2, A ,  = (1 --P-2)2. 

A12 = -(M,+~,)(Mi+nl,-NiM,+N,M,),  

A, ,= -(N,+N2)(M,+J4)P-2,  A3 =P-2(N,+N2)(M,+D.I,), A ,  = A??, 

It is clear that, for this particular solution, non-zero sediment transport and 
friction (/3 > 0, C, > 0) are necessary, but not sufficient, conditions for instability. 

As instability is observed to occur a t  coherent finite wavelengths, the observed 
instability wavelength can be expected to be one at which g5i is positive and a 
maximum. The stationary points of (15) are obtained by setting dq5Jdk = 0, 
yielding 

(B, K 2  + B,C;) k8 + (B,K4 + B, C; K 2  + B, (7;) k6 
+ ( B, K6 + B7 K4C; + B, K2C; + B, C,“) k4 

+ (BloK6C; +BllK4C:) k2+ (B12K8C;+B,3K6C;) = 0, (16) 
where, for example, 

B,= A3A,,-A7A21, B, = A3A,z-A7A22. 

The above equation has four roots k2. A general solution is cumbersome, so twa  
complementary special cases based on the parameter E = C,/K are considered: 
E < 1 and e-1< 1.  

For the case E < 1 the expansions for two of the four roots are of the form 

k2/K2= k&-(l+€2al+ ...). (17) 

To lowest order, this implies a relation for the wavelength of the same form as. 
Werner’s; thus the roots are termed ‘Werner-type’. The expansions for the 
other two roots are of the form 

k2/K2 = ek%(l+eb,+ ...), (182 
F L M  76 30 
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implying Anderson-type roots. In  fact the roots are complementary; the appro- 
priate value of k5 is ( - B ~ ~ / B , # .  

For the case E - ~  < 1 two roots are of Hansen type, 

k2/Ci = k & ( l + ~ - ~ ~ , +  ...), 

k2/Ci = ~ - ~ k i ( l + ~ - ~ d ~ + . . . ) .  
and two have the form 

The degree of instability occurring a t  these stationary points can be determined 
by inserting (17)-(20) into (15) and expanding for #*. The appropriate expansions 
are 

and 

For example, for the Anderson root, 

If the roots (17)-(20) are to represent the characteristic meander or braid 
wavelengths, they must be real and correspond to positive, maximum instability 
among all values of k.  An exact determination of this requires the assumption of 
specific constitutive relations; this will be done below for a particular set of 
data. However, a number of general observations can be made if it  is assumed 
that instability does indeed occur. 

In  fact the two cases E < 1 and 6-l < 1 can be used to distinguish meandering 
and braiding regimes. To do this it is first necessary to establish the following 
result from physical considerations: if any of the wavenumbers given by (17)- 
(20) corresponds to maximum positive instability in k, then both the first and 
the second coefficient in the appropriate expansion for q5{ are positive. For 
example, assume that the Anderson-type expansion corresponds to maximum 
instability. This expansion may be written in the form 

= PcOaA( 1 + E*m-lalA +. . .)) (25) 

where e* = Co/(&F-lkB). Clearly aA > 0. An evaluation of alA in terms of the 
coefficients Aii in (15) indicates that alA does not generally vanish. If alA is 
negative, then q5jA increases for increasing values of rn. Since, for all values of E*, 

m can be chosen large enough so that the condition E < 1 is satisfied, i t  follows 
that for all values of E* maximum instability occurs when the number of braids 
is infinite. This contradicts the observed fact that meandering and finitely 
braided rivers exist, so it must be concluded that a,, > 0. A similar argument 
can be applied to the Werner-type expansions, showing that a, and alrP are 
positive. 

The Hansen-type expansions can be written in the form 

Q i H  = pCOaH(1 +ms*-'alH$ ..a). (26) 
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Clearly aH # 0, and furthermore alH does not generally vanish. If alH is negative, 
then maximum instability occurs for m = 1. Thus only meandering occurs, and 
the tendency to meander increases as E* becomes large. Note that E* = 8B/n-3'do. 
Thus the tendency to meander increases as the slope increases and as the depth- 
width ratio decreases. However, this contradicts the observed fact that extremely 
high slopes and wide, shallow channels are characteristic of braiding. Thus it is 
concluded that alH > 0. A similar argument can be applied to the coefficients 
aE and alE of the expansions for q5iE, showing that both coefficients are positive. 

A differentiation between meandering and braided regimes follows from the 
above. For the exposition, one of the Anderson-type expansions for q5i is assumed 
to indicate instability in the case E < 1 and one of the Hansen-type expansions 
is assumed to indicate instability in the case e-l < 1, although the argument can 
be repeated with the other expansions. A number e0 is assumed to exist such that 
expansions (25) and (26) converge for, respectively, E < e0 and e-l < et l .  In  (25)  
decreasing values of m imply increasing instability. The smallest value of m 
which ensures convergence is m = e*/eo; thus this value of m gives maximum in- 
stability among convergent values of m. Among all values of m, then, the value 
giving maximum instability must satisfy the inequality m d c*/e0. Applying the 
same reasoning to (26), the additional condition m 2 e0e* is obtained. Combi- 
ning these two conditions, the following constraints must be satisfied for maxi- 
mum instability: 

It was shown previously that m can take only positive integral values. Thus, 
regardless of the value of e0, the above condition has the following meaning: for 
e* sufficiently small, m = 1 and meandering occurs, for E* sufficiently large 
braiding occurs, and for E* = O(1) either meandering or braiding may occur. 
An approximate relation for the division between braiding and meandering 
states is 

eO€* 6 m 6 e*/e0. (37) 

Clearly then the condition E* < 1 corresponds to extreme meandering, and 
E* $ 1 to extreme braiding. Note that in the case of meandering the condition 
E < 1 is also satisfied since e* = E .  The condition E $ 1, however, is not realized 
even when m is large, as it is apparent from (37) that, as m increases, c* also 
increases, so that the scale law E = O( 1)  is satisfied. 

It follows that meandering instability is characterized by either a Werner- or 
Anderson-type wavenumber scale. The question as to which scale is in fact 
observed is quickly resolved on the basis of data: the Werner scale indicates 
meander wavelengths that are at least an order of magnitude too small. Thus 
an Anderson-type wavelength relation applies to meandering. None of the 
wavenumber expansions for the case 6-l < 1 strictly apply to braiding, since e 
can never be large enough to assume convergence. However the fact that the 
magnitude of q5iE is much smaller than that of q5ifI in the region where the expan- 
sions are valid indicates that a Hansen-type root (which formally approaches the 
scale of the Anderson root as E +  1 )  provides an appropriate wavelength scale for 

30-2 
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braiding. Furthermore, (27) indicates that the number of braids is estimated by 
the scale relation m N e*. 

In  summary, if B* < 1 meandering occurs at a wavenumber estimated by the 
relation k N (KC,)+; if E* 9 1 braiding occurs at a wavenumber estimated by 
k N C, and with a number of braids estimated by m N e*; and if B* = O(1) 
transition between meandering and braiding occurs. 

These analytical results concerning meandering and braiding regimes are in 
agreement with the illuminating qualitative results of Engelund & Skovgaard. 

It is interesting to note that, while i t  is necessary to assume the existence of 
sediment transport (/3 > 0 )  in this section to obtain instability, the instability 
wavelength and braid number are independent of ,5 to first order. 

8. Establishment of the existence of instability 
A verification of the existence of instability requires that the parameters 

N,, N,, MI and M2 appearing in (10) be calculated from specific constitutive rela- 
tions. For illustrative purposes, this is done herein using the relations of Engelund 
& Hansen (as reported in Engelund & Skovgaard 1973, pp. 295, 296, 298), 
which apply to straight sand-bed rivers with dune resistance. I n  the notation 
of this paper, the resistance and load relations are, respectively, 

eC,F: = 0.06 + 0.4(C0F,2)2, 

c0q* = 0*05(c0F2,)g, 

where 8 is defined by the relation (C,8)-* = 6 + 2.5 In (BR/2.5). After some mani- 
pulation i t  is found that 

where 
N2 = (1 -7)-l, MI = 2cM2, N, = 1*57M2, Nl = 3c+ 2 + 1*57M1, 

5(ec0)+ 
= [1+ 5(8C,)*] ( 1  + qe)' 

and 

If C, satisfies the inequality C, < 10-2 (a value rarely exceeded in straight 
reaches of sand-bed rivers) then it is easy to show that 0 < 7 < # and 3 < c < 2.5, 
in which case 

1 < M, < 6, Ml > M,, $ < Ml < 30, 

0 < N, < 7.5, 

Expanding (15) about k = 0 shows that for small k 
Nl > N,, 4 < Nl < 47 

The coefficient A,  is positive by definition. Furthermore, using the above bounds 
on MI, M,, Nl and N,, i t  is seen that 

A11 = MZ(N1- 1)  > 3 ,  

A12 = -(Mi+M2)[(1-Ni)M,+(1+N2)Ml] = (1+2[)(1+5)M% > 0. 
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Thus, under bhe indicated restrictions, a range of wavenumbers for which q5i is 
positive always exists and instability characteristic of meandering or braiding 
always occurs. 

9. An interpretation of the criterion for braiding 

different form: 
The physical meaning of the parameter E can be made clear by writing it in a 

4m) = 7 0  (B/m4/(PU2do)f ( P g m f .  (28) 

This is a ratio of work to available energy (with both potential and kinetic 
energy contributions). Thus the parameter e fm)  can be interpreted to be of the 
same order as (and a measure of) the ratio of the work that must be done to 
maintain a mode of oscillation of m braids to the available energy associated 
with the m-braid mode. If, for some value of m, e(m) is small enough that the 
available energy is more than sufficient to overcome resistance, that mode may 
exist, at  least in principle. I f  e(m) is large, resistance devours a large portion of 
m-mode oscillations, and for viable modes the number of braids m must increase, 
causing e to decrease until the work-energy ratio becomes more favourable. If 
a number of modes are possible, condition (27) indicates that those with the 
least excess energy are most likely to occur. 

The above has interesting implications for channel form. It has often been 
observed that the banks of braided rivers are generally straighter than those of 
meandering rivers (e.g. see the remark concerning Lane’s hypothesis on p. 1298 
of Vanoni et al. 1972). It is reasonable to assume that bank erosion due to mean- 
dering and braiding is caused the by excess energy of transverse oscillation. 
Thus, for any mode of m braids, if e can be made small, significant local bank 
erosion may occur. However, in the case of braided rivers, E simply cannot be 
small. If, for some m, 6 = CO/(+mP-lk,) is made sufficiently small, m will be 
reduced until modes with smaller excess energy are obtained; that is, instead of 
the banks being eroded, the number of braids is reduced. The only case in which 
this cannot happen is that of m = 1, the case of meandering. Since the number of 
braids cannot be reduced in this case, excess energy is available for bank erosion. 
Bank erosion then will continue, increasing sinuosity and thus the comparative 
effect of friction, until again the excess potential energy is minimized. Thus 
greater eventual sinuosity is expected for smaller initial E* ( = E when m = 1).  

The fact that meandering in laboratory streams is generally not very sinuous 
can be explained as follows. Since loose sand is generally used for bed and bank 
material, the banks are extremely erodible, and the stream widens so much 
before fluvial instability occurs that E* is increased considerably. The above 
theory predicts that significant sinuosity can be attained in the laboratory by 
constructing a relatively narrow channel (in SO far as the condition dolB < 1 is 
satisfied) with loose sand for the bed material, and for the banks a partly cohe- 
sive material that, while erodible, is less erodible than that on the bed. 



470 G. Parker 

10. Remarks on the bedload-independent solutions 
The development of the previous two sections hinged on the assumption that 

instability was dependent on sediment transport in a dynamic way. However, 
manpauthors have asserted that meandering is a property of the flow, the role 
of sediment transport being to kinematically and passively make this instability 
visible on the bed. From this point of view the role of sediment in meandering is 
similar to the role of dye placed in turbulent water; the dye does not cause the 
turbulence, but rather merely serves to make it manifest. 

One way to test this assumption is to see whether flow instabilit’y on the scale 
of meandering exists in non-erodible channels. This can be done by examining 
the roots of the ‘outer’ characteristic equation (1 3), in which C, has been equated 
to the grain resistance CG in recognition of the fact that no sediment transport 
implies no bedforms. For an examination of meandering, m is set equal to I and 
the approximation e* < I (associated with meandering) is applied. Expansions 
of the form q5 = a, + Cia, + . . . + iC,(b, + Cib, + . . .) can be obtained for the three 
roots of (13); to the lowest order that allows for a decision on stability, they are 

F-2k2 + K2 + B2 k(K2 + P-2k2)* 
2(F-2k2 + K2)  r j 2  = k - ( K 2  + F-2k2)* - iCG 

.@,P--2k2-M2 k(K2+ F-2k2)* 
2 (F-2k2 + 2 7 2 )  

= k + ( K 2  + F-2k2)* - iC, [ 
where 

If C, were completely constant, B1 would equal 2 and M2 would equal 1 ; actual 
values roughly approximate these. Clearly the first and second roots indicate 
stability; the third root indicates instability for only 

This implies a meander-like analogy to the Vedernikov or roll-wave instability 
(see Chow 1959; Henderson 1966, p. 342), which has nothing to do with fluvial 
meandering. Allowing CG to vary according to a logarithmic law does not change 
the qualitative behaviour, but simply alters somewhat the Froude number at  
which Vedernikov instability occurs. 

Thus the following result has been established: if e* is sufficiently small, 
meandering is not a property of the flow, and non-zero sediment transport is a 
necessary condition for the formation of instability leading to meandering. 
Furthermore, it  is then apparent that, in the presence of sediment transport, 
small e* is a sufficient condition for meandering if any fluvial instability exists 
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at all. [See (27).] A similar result can be established for the case e B 1, again 
indicating a critical Froude number near 2 below which instability does not 
occur. 

11. Comparison with data 
The parameter 8% can be written in the form 

I S B  
@ = - - -  

7~ P do 

The theory indicates that, in rivers such that sediment transport exists and 
d,/B < 1 at formative discharges (both conditions are almost universally satisfied 
in natural rivers), a tendency towards either meandering or braiding exists. 
Furthermore, meandering occurs for S/F < d,/B, braiding occurs for SIP 9 d,/B 
and transition between the two occurs for SIP N d,/B. 

These relationships corroborate the observation that, while meandering 
streams usually have gentle slopes and rather narrow channels, braided streams 
generally have steep slopes and wide channels. Thus the same river may often 
be braided in its mountain reaches but meandering in its more gently sloping 
lower reaches, as Chien (1961) has observed on the Yellow River. Schumm 
(1963) has observed that the depth-width ratio tends to decrease with decreasing 
bank cohesivity; this combined with the above stability criteria helps to explain 
why some rivers meander and others braid at the same slope. 

The theory does not indicate any conditions under which a stream which 
transports sediment remains straight. Chang, Simons & Woolhiser (1971) and 
Vincent (1 967) have demonstrated experimentally that for sufficiently large 
values of d,/B neither meandering nor braiding develops. The condition for 
the maintenance of a straight channel appears to be d,/B > 10-l. Such large 
values of d,/B can be attained in the laboratory and in artificial canals but 
are rarely attained in natural rivers. Anderson et al. (1975) have shown that 
in narrow channels the augmented effect of bank friction tends to damp 
instability . 

Thus the results of this and other analyses can be combined to delineate an 
order-of-magnitude meanderlbraidlstraight regime diagram, which is tested in 
figure 4. The data cover 75 laboratory flume experiments, 22 irrigation canals 
and reaches of 53 natural rivers. The natural rivers are referenced in table 2. 
Where possible, field data estimated for bank-full flow were used with the implicit 
assumption that the morphologically formative discharge ranges are near 
(probably above) bank-full discharge. The relative lack of such data required 
the inclusion of data from rivers based on mean or other flow conditions. The 
discrepancies thus introduced do not appear to be critical; for example, point 3 
of figure 4 represents a reach of the Mississippi River a t  mean discharge, whereas 
point 4 represents the same reach a t  bank-full flow. Another source of inaccuracy 
is the fact that some data had to be estimated from information in the literature 
that was occasionally rather crude. 
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O0 

FIGURE 4. Meander/braid/straight regime diagram, tested with data. The triangles mark 
stream reaches that were actually braided, circles mark meandering reaches and squares 
mark straight streams. Laboratory experiments: a, A, St Anthony Falls (run M-1-1); 
A, St Anthony Falls braided data; m, 0 ,  Wolman & Brush (1961); A, @, Schumm & 
Kahn (1972); 6 ,  0 ,  Ashida & Narai (1969); 0, Ackers & Charlton (1970); 0 ,  Quraishy 
(1973). Field observations: 0, Simons (1957), irrigation canals; A, 0, rivers (numbers 
refer to table 2 ) .  

Equation (18) can be written in the following form, providing a predictive 
relation for meander length: 

where 

Note that this is the form of the Anderson equation with an evaluation of the 
adjustable constant that Anderson obtained as roughly equal to 72. Hereafter 
the above will be referred to as the modified Anderson equation. The instability 
associated with the predicted wavelength is measured by the imaginary part of 
the complex celerity (bi = ~CoM2(Nl  - l), which must be positive. 

The meandering characteristics A and $(, then, are dependent not only on the 
relatively easily measured parameters B, do, F ,  C, and j3, but also on the para- 

meters i u ac, s ac, u ago s ago 
2c0au, qas, ;ax* 

In  general, none of the latter parameters is negligible. 
The results concerning meandering may be verified or invalidated by experi- 

ments that are relatively simple in principle. It has been pointed out previously 
that meandering is observed to occur in flumes corresponding to the model 
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Point River 

1 White River 
2 White River 
3 Mississippi River 
4 Mississippi River 
5 Yellow River 
6 Glomma River 
7 Matanuska River 
8 Knik River 
9 Knik River 

10 Misaouri 
11 Missouri 
12 Missouri 
13 Missouri 
14 Missouri 
15 Elkhorn 
16 Elkhorn 
17 Big Sioux 
18 Big Sioux 
19 Platte 
20 Platte 
21 Niobrara 
22 Salinas 
23 Salinas 
24 Salinas 
25 Salinas 
26 Middle Loup 
27 Middle Loup 
28 Middle Loup 
29 Middle Loup 
30 MiddleLoup 
31 Gmga 
32 Great Gandak 
33 Sarda 
34 Ganga 
35 Beaver Creek 
36 Watts Branch 
37 Platte 
38 Platte 
39 Platte 
40 Missouri 
41 Missouri 
42 Missouri 
43 Missouri 
44 Missouri 
46 Tennessee 
46 Buttahatchee 
41 Kansas 
48 Kansas 
49 Kansas 
60 Maumee 
51 Maumee 
62 Smoky Hill 
53 Smoky Hill 

Catastrophic flood 
High 
Low 
High 
Low 

High 
Low 
High 
Low 
High 
Low 

High 
Low 
High 
Low 
Instantaneous 
Instantaneous 
Instantaneous 
Instantaneous 
Instantaneous 
Bank full 
Bank full 
Bank full 
Bank full 
Mean 
Mean 
Mean 
Mean 
Mean 
Mean 
Mean 
Mean 
Mean 
Mean 
Mean 
Mean 
Mean 
Mean 
Mean 
Mean 
Mean 
Mean 
Mean 

- 

- 

Discharge conditions Location 

Instantaneous Mt Ranier, USA 
Instantaneous Mt Ranier, USA 
Mean Vicksburg, USA 
Bank full Vicksburg, USA 
Near bank full Mengtsing, China 
Bank full Koppangsoyene, Norway 
Normal summer high Anchorage, USA 
Normal summer high Anchorage, USA 

Anchorage, USA 
Pierre, S. Dak., USA 
Pierre, S. Dak., USA 
Ft Randall, USA 
Ft Randall, USA 
Omaha, Nebr., USA 
Waterloo, USA 
Waterloo, USA 
Akron, USA 
Akron, USA 
Ashland, USA 
Ashland, USA 
Butte, USA 
San Lucas, USA 
San Lucas, USA 
Paso Roblis, USA 
Paso Roblis, USA 
Dunning, USA 
Dunning, USA 
Dunning, USA 
Dunning, USA 
Dunning, USA 
Kankhal, India 
Chitauni, India 
Sarda Sagar, India 
Raighat Narora, Indict 
Daniel, Wyo., USA 
Rockville, Md., USA ' 
Grand Island, Nebr., USA 
Odessa, Nebr., USA 
Overton, Nebr., USA 
St Joseph, Mo., USA 
Hermann, Mo., USA 
Pierre, S. Dak., USA 
Kansas City, Mo., USA 
Bismarck, N. Dak., USA 
Knoxville, Tenn., USA 
Caledonia, Miss., USA 
Bonner Springs, Kan., USA 
Lecompton, Kan., USA 
Ogden, Kan., USA 
Defiance, Ohio, USA 
Waterville, Ohio, USA 
Lindsborg, Kan., USA 
Enterprise, Kan., USA 

Source 

Fahnestock (1963) 
Fahnestock (1963) 
Winkley (1973) 
Winkley ( 1973) 
Chien (1961) 
Nordseth (1973) 
Fahnestock & Bradley (1973) 
Fahnestock & Bradley (1973) 
Falinestock & Bradley (1973) 
Einstein & Barbarossa (1952) 
Einstein & Barbarossa (1952) 
Einstein & Barbarossa (1952) 
Einstein & Barbarossa (1952) 
Einstein & Barbarossa (1952) 
Einstein & Barbarossa (1952) 
Einstein & Barbarossa (1 982) 
Einstein & Barbarossa (1952) 
Einstein & Barbarossa (1952) 
Einstein & Barbarossa (1953) 
Einstein & Barbarossa (1952) 
Einstein & Barbarossa (1952) 
Einstein & Barbarossa (1952) 
Einstein & Barbarossa (1952) 
Einstein & Barbarossa (1  952) 
Einstein & Barbarossa ( 1952) 
Hubbell & Matejka (1959) 
Hubbell & Matejka (1959) 
Hubbell & Matejka (1959) 
Hubbell & Matejka (1959) 
Hubbell & Matejka (1959) 
Gupta et al. (1969) 
Gupta et al. (1969) 
Gupta et al. (1969) 
Gupta et al. (1969) 
Leopnld & Wolman (1957) 
Leopold & Wolman (1957) 
Leopold & Wolman (1957) 
Leopold & Wolman (1957) 
Leopold & Wolman (1957) 
Leopold & Wolman (1957) 
Leopold & Wolman (1957) 
Leopold & Wolman (1957) 
Leopold & Wolman (1957) 
Leopold & Wolman (1957) 
Leopold & Wolman (1957) 
Leopold & Wolman (1957) 
Leopold & Wolman (1957) 
Leopold & Wolman (1957) 
Leopold & Wolman (1957) 
Leopold & Wolman (1957) 
Leopold & Wolman (1957) 
Leopold & Wolman (1957) 
Leopold & Wolman (1957) 

TABLE 2. Key to  natural rivers in figure 4 
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theoretical channel postulated herein and that, furthermore, essentially steady- 
state flow with developed grain and bedform resistance occurs long before mean- 
dering begins to occur. In  accordance with the concept of stability, all the 
appropriate parameters except the meander length itself must be obtained by 
measuring this initial non-meandering flow, the derivatives being obtained by 
comparing steady-state initial flows of slightly different discharge and slope. 

Unfortunately, such experiments have not yet been conducted. (Perhaps the 
experiments of Callander ( 1969) constitute the closest attempt.) However, data 
are available for the flow conditions which exist after meandering has developed 
fully. Such data are inappropriate for studying the origin of meandering, as 
they contain the extra resistance of the meanders themselves, which cannot exist 
prior to meandering. Thus such data are used herein with the aid of the unverifi- 
able and possibly inadequate assumption that the large-scale bedform resistance 
is negligible. An example of such data is contained in the work of Chang et a2. 
(1971), conducted in a flume corresponding to the model theoretical channel. 
Their experiments were conducted with three bed materials: sand, expanded 
clay and plastic pellets. 

A comparison with the Chang et al. data, keeping in mind the difficulty cited 
previously, was attempted. Apparently because the clay and sand experiments 
were conducted in the transition regime between hydraulically smooth and 
hydraulically rough flow, a satisfactory division of the bed resistance into grain 
and bedform components C,: and C, could not be accomplished; thus only the 
plastic experiments, approaching fully rough flow, were used. 

Almost all the plastic experiments were conducted in a 3 f t  wide flume with 
plastic pellets having a uniform characteristic diameter estimated to be 3.2 mm. 
C, was obtained from a solution of a logarithmic resistance equatioq for rough 
flow. In  the same way the appropriate derivatives of C, can be obtained: 

I uac,- s ac, 

q ax = (1 + 0.202C,+)’ 

- - - - - - - 
2cG au CQ as’ 
s ac, 1 

In  figure 5 ,  the bedform resistance C, has been plotted against the flow velocity 
U ,  the curve beginning from a velocity estimated from Shield’s criterion as the 
velocity at  the inception of sediment motion. Characteristic rising, plateau and 
falling regimes of bedform resistance are apparent (Raudkivi 1963). As the data 
were too few to enable both derivatives of CB to be obtained accurately, it  was 
decided to obtain them from at least the form of a known bedform resistance 
relation. The relation of Shen (1962), i t  was found, could be modified to represent 
the data in a rough way for the regime of falling resistance, as is illustrated in 
figure 6; thus the three points not in this regime were discarded and the deriva- 
tives of C, for the remaining points obtained from 
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2 3 

u x  1 0  

FIGURE 5. Bedform resistance coefficient CB plotted against average flow velocity U (in 
mls), for the Chang et al. (1971)  experiments with plastic bed materials in a 3 ft wide 
flume. 
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FIGURE 6. A crude fit of‘ some of the Chang et al. (1971)  plastic data with a. Shen-type 
bedform resistance relation: 

GB = [0.1O-0.11 In (C,P:A’)]Z, 
where A’ = (v8dS/v)* and w, is grain fall velocity. 

Bedload parameters were found in a similar way assuming that the Einstein- 
Brown bedload relation (Brown 1950) holds. 

In this manner, values of h/(Sdo)* predicted by (29), as well as experimental 
values, were calculated; these are compared in figure 7. For reference purposes, 
observed values of h /d ,  are plotted against values predicted by Hansen’s theo- 
retical relation h/do = 7Cr1 in figure 8. For this set of data the modified Anderson 
equation appears to be the more accurate of the two. It must, however, be realized 
that the nature and sparseness of the data preclude a thorough comparison of 
the two relations. 



476 

7 -  

6 -  

5 -  

* 
I 

2 4 -  

33" 

X 

- 
5 3 -  
6 

7 -  
i 

1 -  

a. Parker 

O A  

0 A 0 8  A 

0 
A 

0 A' 
A 

A o  0 

B 

01 I I t I 
0 1 2 3 4 

27rtci F t  x 10-1 

FIGURE 7. According to the modified Anderson relation, the dimensionless meander length 
h/(Bd,)* is scaled by the parameter 27rk';33'* and can be calculated to first order from 

h/(Bd,)+ = 27r4$C&4Fi, 

where @ is a complicated order-one coefficient. Observed (circles) and calculated (tri- 
angles) values of A/(  Bd,)* are plotted against 27r*C,$F$. Perfect agreement implies 
coincidence of the circles and triangles. 

12. Conclusion and discussion 
Meandering and braiding are treated as different degrees of the same instability 

phenomenon. Sediment transport and friction are indicated to be essential 
factors for the occurrence of instability, whereas helicity is not essential. An 
Anderson-type relation for meander wavelength, a criterion for meandering and 
braided regimes, and an estimate of the number of braids are obtained; all these 
results are essentially independent of the magnitude of sediment transport. 

The unified treatment of meandering and braiding of this and other studies 
deserves justification in terms of geomorphology. Both phenomena clearly 
grow out of bar formation. It has traditionally been held that braiding is caused 
by sediment loads so high that the river cannot carry the total amount, resulting 
in deposition on the bed as internal bars and general channel aggradation. On 
the other hand, the mechanism causing meandering is typically identified as 
secondary flow associated with channel curvature. If the causes of meandering 
and braiding were so different a unified approach would be impossible. 
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FIGURE 8. According to  the Hansen relation, the dimensionless meander length h f d ,  is 
scaled by the parameter C;l and can be calculated from h / d ,  = 7C;’. Observed (circles) 
and calculated (triangles) values of A/d, are plotted against C;1. Perfect agreement implies 
coincidence of the circles and triangles. 

In  fact both these theories are demonstrably incorrect. The first theory im- 
plies that braided channels can never be in an equilibrium, or graded state, 
whereby the load supplied from upstream of a point is balanced by the Ioad 
transported downstream. Presumably, then, aggradation occurs until a higher, 
equilibrium slope is obtained, a t  which point braiding must stop. However, 
slope increases are in fact observed to exacerbate braiding rather than damp it. 
Furthermore, many braided rivers do not aggrade: Leopold & Wolman (1957) 
have observed that “...braided patterns may be as close to quasi-equilibrium 
as rivers possessing meandering or other patterns ”. As regards meandering, it 
has been shown herein that the channel curvature needed to induce secondary 
flow is a result rather than a cause of initial meandering tendencies in straight 
channels, a fact that has been experimentally verified (see $ 2 ) .  

The analysis of this paper indicates that most streams have a tendency to 
form bars even though they are in a graded state. If the slope and the width- 
depth ratio at formative discharges are sufficiently low, meandering is favoured. 
If the slope and the width-depth are sufficiently high, braiding is favoured. The 
fundamental question of how slope, width and depth are determined is not 
addressed herein; it suffices to observe that aggradation, by increasing the 
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slope and forcing the channel out of its banks, can lead to a transition from a 
meandering to a braided state, or can increase the tendency for braiding. 

The result concerning sediment transport is also of some interest. The thesis 
that meandering is an inherent property of the flow, and that sediment transport 
is necessary only in a kinematic way to impose this flow pattern on the bed, must 
be discarded in so far as the present theory applies. Rather, it  is indicated that 
the existence of sediment transport is a dynamically necessary condition for 
the formation of instability leading to meandering either in the flow or on the 
bed. 

This conclusion must be reconciled with the fact that meandering in fluid 
streams occurs in circumstances in which sediment transport is not present; 
namely, in oceanic currents such as the Gulf Stream, streams of meltwater on 
ice, and Gorycki’s streams a few millimetres wide on plastic plates. Common to 
all meandering streams are potential (inertial and gravitational) and friction 
effects; it  is proposed here that an additional ‘third effect ’ is required for mean- 
dering. This third effect is identified as follows: for alluvial streams, sediment 
transport; for oceanic currents, the Coriolis acceleration; for glacial meltwater 
streams, heat differences, and for Gorycki’s streams, surface tension. In  the first 
t,hree cases, this identification is supported by, respectively, this paper, Stomme1 
(1965) and Parker (1975). Gorycki’s reply (1973b) to discussion on his paper also 
contains a note on the role of surface tension. 

Perhaps the major inadequacy of the present theory is that the channel width 
a t  a formative discharge must be known before any of the relations can be 
evaluated. This and the fact that constant discharge is assumed make application 
to natural rivers difficult. The theoretical study of Hirano (1973) on bank erosion 
and the experimental work of Ackers & Charlton (1970) on the dominant dis- 
charge of meandering rivers provide examples of possible approaches to these 
problems. 

The author deeply thanks Dr Alvin Anderson for suggestions and guidance. 
Also, suggestions of several anonymous referees have proved valuable and have 
been incorporated into the text. This research was supported by the National 
Science Foundation and the St Anthony Falls Hydraulic Laboratory. 
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FIGURE 1 .  (a )  A highly meandering river reach: the Pembina River near Jarvie, Alberta, 
Canada. ( b )  A moderately braided river reach: the North Saskatchewan River near Banff 
National Park, Alberta, Canada. 
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FIGURE 2 (a ) .  For legend see facing page. 

Plate 2 
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(b )  

FIGURE 2 .  Photographs of progressive meander formation in an initially straight channel. 
Flow is from bottom to top; discharge has been momentarily lowered to  render bed pat- 
terns visible. (a )  One hour after start. ( b )  Four hours after start. 
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